Header Ads

Breaking News
recent

Gauhati University Question Papers for Mathematics 4th Semester

Gauhati University Question Papers for Mathematics 4th Semester

Question Paper from 2010 available  



         More than 50 question papers every semester

Please check your syllabus before downloading the question paper.

If syllabus does not match then don't download the question paper.

Year
Paper 101
 Paper 102
2010
Download
Download
2011
2012
2013
2014
2015
2016
2017



This is the downloading page for Mathematics 1st  semester but if 

you want to explore the world of mathematics than go to the main 

page for Mathematics major. Find the all the help form the world of 

education so please comment. 



Link is below down here



Main page- link













 More than 50 question papers every semester



4th Semester Revised Syllabus of Mathematics For Three year Degree Course ( Major Course)




Real Analysis 

Unit1: Characterization of the real number system R as a complete Archimedean ordered field, neighbourhoods, open set, closed set, limit point of a set Bolzano-Weierestress theorem for a set, nested interval theorem.
Sequence of real numbers, bounded and unbounded sequences, subsequences, limit of a sequence, Bolzano-Weierestress theorem for bounded sequences, limit superior and limit inferior, convergent and divergent sequence, Cauchy sequences, Cauchy’s principle of convergence, convergence and divergence of monotonic sequences, algebraic operation on limits, sandwich theorem, Cauchy theorem on limit.                                       

Unit 2:Infinite series, convergence ,divergence and Cauchy’s general principle of convergence, introduction and removal of brackets, multiplication of series and double series, comparison test, Cauchy’s root test, D’Alembert’s ratio test( with proof),statement ( without proof) of Raabe’s test, logarithmic test, Gauss test, Cauchy’s condensation test, Cauchy’s integral test for testing the convergence of series of positive terms, Abel’s theorem, alternating series and Leibnitz’s test, absolute and conditional convergence, statement and application of Riemann theorem and Dirichlet’s theorem( without proof)
on the rearrangement of terms of an infinite series.                                           

Unit 3: (   ,δ) definition of limit and continuity of a function of single variable, properties of continuous functions in closed interval, sequential continuity, inverse function and monotonic function, uniform continuity.                                                            

Unit 4:  Derivability of a function of single variable, algebra of derivatives, Darboux’s theorem, intermediate value theorem for derivatives, Roll’s theorem, mean value theorems, intermediate forms, Taylor’s theorem, Taylor’s and Maclaurin’s infinite series, expansion of e x , sin x, cos x, log(1 + x)and (1 + x,maxima-minima of a function of single
variable and two variables (reducible to single variable).                                   




 4th Semester Revised Syllabus of Mathematics For Three year Degree Course ( Major Course) Paper-405


Mechanics 

Unit 1: Parallel forces, couples, reduction of coplanar forces, analytical condition of equilibrium of coplanar forces, friction.                                                            
Unit2: Centre of gravity of a plane area, arc and a sector of a curve, C.G of solids and surface of revolution, C.G of areas bounded by a given curve.                      

Unit3: Principle of virtual work-in two dimensions, forces in three dimensions.Poinsot’s central axis, wrenches, null lines and planes.                                                    
Unit 4: Stable and unstable equilibrium.                                                           

Unit5: Velocities and acceleration along radial and transverse directions and along tangential and normal directions, motion in a straight line under variable acceleration, simple harmonic motion and elastic string.                                                      


Unit6: Motion on smooth and rough plane curves, motion in resisting medium, motion of particles of varying mass.                                                                                   


Unit7: Central orbit and Kepler’s laws of planetary motion.                           

No comments:

Powered by Blogger.