Gauhati University Question Papers for Physics 4th Semester
Gauhati University Question Papers for Physics 4th Semester
Question Paper from 2010 available
More than 50 question papers every semester
Please check your syllabus before downloading the question paper.
If syllabus does not match then don't download the question paper.
| 
Year | 
Paper 101 | 
 Paper 102 | 
Download | 
| 
2010 | 
Download | 
Download | 
Download | 
| 
2011 | |||
| 
2012 | |||
| 
2013 | |||
| 
2014 | |||
| 
2015 | |||
| 
2016 | |||
| 
2017 | 
This is the downloading page for Physics 4th semester
but if 
you want to explore the world of Physics than go to the main
page for Physics major. Find the all the help form the world of
education so please comment.
Link is below down here
Main page- link
More than 50 question papers every semester
Syllabus down here
FOURTH SEMESTER
PAPER: 401 (THEORY)    
            
(a) MATHEMATICAL METHODS-IV:     
1.   Differential  Equations:  Second  order  linear  differential  equations,  series  method  of  solutions
(Frobenius),  Legendre’s  differential  equations,  Legendre’s  polynomial,  Hermite’s  differential 
equations, Hermite’s polynomial, generating function, spherical harmonics, orthogonal properties
& recurrence relations.                                                      
2.   Probability theory: Mutually exclusive events, theorem of total probability, compound events and theorem  of  compound  probability.  Probability  distributions  -Gaussian  distribution,  mean  and standard deviation.                                                            
(b) INTRODUCTON TO COMPUTER AND COMPUTER PROGRAMMING: 
1.   Functional   organisation   of   a   digital   computer-CPU,    memory,   input/output   unit.
Flowcharts, Algorithms, High level Computer languages, programming in one high level
++ 
language  (eitherFORTRAN-95  or C or C
). Data types, different  types of variables, 
important commands, I/O statements, relation and logical statements, transfer statements, string manipulation, subscripted variables, Functions and subroutines.           
PAPER: 402 (THEORY)              
(a) WAVE OPTICS:
(a) WAVE OPTICS:
1  Interference: Concept of light wave and its equation, complex representation of superposition of waves, meaning of coherence, to show that interference fringes are hyperbolic in general, condition for straight  fringes,  Stokes’  law, interference  due to Fresnel’s  biprism,  interference  by a plane parallel film, wedge shaped film, colour of thin film, Newton’s rings, Michelson interferometer and its application for finding difference in wavelengths.           
2 Diffraction: Difference between Fresnel and Fraunhofer classes, half-period zones and strips, Zone plate and its lensing property, diffraction at a straight edge and at a circular aperature (with
2 Diffraction: Difference between Fresnel and Fraunhofer classes, half-period zones and strips, Zone plate and its lensing property, diffraction at a straight edge and at a circular aperature (with
reference to microscope), Fraunhofer diffraction due to a single slit, double slit and transmission
gratng, wavelength measurement by the plane transimission grating, resolving power of a grating, theory of concave grating.                                              
3 Polarisation: Double refraction, optic axis and CaCO3 crystal, plane, circular and elliptically polarised light, Retarding plates and their uses for producing and analysing different polarised light, specific rotation of plane of polarisation and half-shade polarimeter.
(b) SPECIAL THEORY OF RELATIVITY:                                      
1. Formulation    of    Special    Theory    of    Relativity    and    Relativistic    Kinematics: The need for a new model of kinematics (relativity). Electromagnetism and null result of Michelson-Morley  experiment, negation of ether concept. Postulates of special theory of 
relativity. Galilean transformation (Newtonian kinematics) and Lorentz transformation. Application  of  Lorentz  transformation,.   Length  contraction,  time  dilation  and  their examples   and   application   to   physical   situations   (viz.   muon   decay).   Relativistic transformation of velocity. Relativistic Doppler Effect and twin paradox.         
2. Relativistic  Momentum  and  Energy,  Space-time:  Relativistic  momentum  and  energy.
Equivalence of mass and energy. Massless particles (i.e. photons). The geometry of space- time and space-time interval. Time-like and space-like events .Concept of four-vectors and
Minkowski space.
 

 
 
 
 
 
 
No comments: