Header Ads

Breaking News
recent

Gauhati University Question Papers for Physics 5th Semester

Gauhati University Question Papers for Physics 5th Semester

Question Paper from 2010 available  




        More than 50 question papers every semester


Please check your syllabus before downloading the question paper.


If syllabus does not match then don't download the question paper.

Year
Paper 101
 Paper 102
Download
2010
Download
Download
Download
2011
Download
Download
Download
2012
2013
Download
Download
Download
2014
2015
2016
Download
2017
Download
Download
Download



























This is the downloading page for Physics 5th semester but if 

you want to explore the world of Physics than go to the main 

page for Physics  major. Find the all the help form the world of 

education so please comment. 



Link is below down here



Main page- link










More than 50 question papers every semester


Syllabus down here


FIFTH SEMESTER

PAPER: 501       (THEORY)                
(a) MATHEMATICAL METHODS-V:              

1.   Algebraic  operation,  Argand  diagram,  vector  representation,   complex  conjugate, Euler’s formula, De-Moiver’s theorem.                                                            
2.   Analytic function of a complex variable, Derivative of F(z) and its analyticity, contour
integrals, equivalent contours, Cauchy integral theorem, differentiation under integral sign.                                      
3.   Series   expansion:   Taylor   and   Laurent   series   and   their   simple   applications.
Residues, Zeros, isolated singular points, evaluation of residues. Evaluation of definite intragrals.                                                                                                          
(b) CLASSICAL MECHANICS:                     
1.   Central force motion, two body central force motion, two body motion as a one body problem,  general  properties    of  central  force  motion,  Energy  and  momentum  as
constants  of  motion  in  central  force,  Energy  equation  involving  only  the  radial motion, energy diagram and nature of orbits.                                                 
2.   Application  of  central  force  problem  to  motion  under  inverse  square  force  field, solution of the equation  of the path to find the nature of the orbits as hyperbolic,
parabolic and elliptic.                                                                                      
3.   Constraints,   generalized   co-ordinates,   principle  of  virtual  work,  D’  Alembert’s principle and Lagrange’s equations of motion, simple applications of Lagrangian formulations  (i) Atwood  machine  (ii) simple pendulum  (iii) Keplerian  motion  (iv) bead sliding on rotating  wire.(v)compound  pendulum,(vi)linear  harmonic  oscillator
Hamilton’s principle, calculus of variation, shortest distance between two points as example, Lagrange’s equations from Hamilton’s principle, Hamiltonian of a system,
Hamilton’s  canonical  equations  of motion, applications  of Hamilton’s  equations  to simple problems like simple pendulum, Kepler’s problem., Poisson brackets.
14 Lectures


PAPER: 502   (THEORY)                
ATOMIC PHYSICS:                                       
1.   Positive  rays and their  analysis:  Thomson's  mass parabola  method;  Aston's  mass spectrograph, Bainbridge mass spectrograph.                                              
2.   Rutherford's  nuclear atom model, alpha scattering expt; deduction of the scattering
formula.                                                                                                            
3.   Atomic  spectra:  Bohr's  theory  of  hydrogen  spectra;  energy  level  diagram;  Ritz combination  principle;  resonance,  excitation,  critical and ionization  potentials;  fine
structures of the spectral lines; Sommerfeld's extension of the Bohr's theory.

4.   Vector  atom  model  : Spectra  of alkali  atoms;  Bohr  magneton;  spinning  electron;
quantum   numbers;   Pauli's   exclusion   principle;   explanation    of   the   periodic classification of the elements; spectroscopic notations; source of radiation in external fields- normal Zeeman effect; anomalous Zeeman effect; Paschen-Back effect; Stark effect; Stern-Garlach experiment.                                                                  
5.   X-rays: Continuous and characteristic X-rays Mosley's law, Compton effect. 
6.   Scattering of light: Rayleigh scattering formula; colour of the sky; polarisation of the scattered light; Raman effect, experimental study of Raman effect, quantum theory of
Raman effect, application of the effect.                                                          


PAPER: 503 (THEORY)                

(a) QUANTUM MECHANICS:      

1. Development of quantum mechanics in light of Black body radiation, failure of classical idea, Plank's quantum hypothesis, photoelectric effect and Compton effect.      
2. Matter wave: Wave particle duality, de Broglie wave associated with moving particles-(i)
non  relativistic  and  (ii)  relativistic  case,  verification  of  matter  waves  by  (i)  Davisson
Germer's experiment and (ii) G.P. Thomson's electron diffraction experiment.  
3. Complimentary  principle of Neils Bohr, Heisenberg's Uncertainty Principle, Gamma ray microscope experiment, application of Uncertainty Principle.                              
4. Wave  function  and  its  probabilistic  interpretation  as probability  amplitude;  Continuity
equation,  probability  density and probability  current density J; Normalisation  condition and normalised wave function; properties of well behaved wave function in quantum mechanics. Wave packets, Superposition of waves, phase velocity and group velocity and their relation.                                                                                                            
5. Introduction to operator formalism, Dynamical variable as operator (position, momentum and Hamiltonian), Eigenvalues and eigenfunction; Expectation value, Ehrenfest's theorem. Schrodinger    wave   equation   –   (i)   time   dependent   and   (ii)   time   independent.. Correspondence   Principle.   Application   of   Schrodinger's   wave   equation   –(i)   one dimensional   step   potential   (ii)   one   dimensional   potential   barrier,   Reflection   and transmission  coefficients  and  tunneling    effect,  (iii)  a  particle  in  a  one  dimensional potential  well of infinite  depth (iv) one dimensional  harmonic  oscillator.(v)  Theory  of hydrogen atom- separation of variables, radial solution.                                  

(b) ASTROPHYSICS:                            
1. Astrophysical    Co-ordinates:    Celestial   coordinate   systems,   The   right   Ascension, Declination and Altitude-Azimuth coordinate systems. The ecliptic and annual motion of 
the Sun across the sky the Signs of Zodiac. Identifications of the Constellations and  bright stars.                                                                                                                         
2. Concept of time: Sidereal time and solar time; Greenwich Mean Time(GMT),  standard time and local time; Julian date and its importance in astronomical observation.
3. Stellar Magnitude system and Distance measurement: The Stellar magnitude system and its relation  with luminosity.  Apparent  and absolute  magnitude  and their relations  with
distances. Trigonometric and spectroscopic parallax to determine the distances. Difference magnitude systems.                                                                                                
4. Spectral  Classification  and  H.R.  Diagram:  Spectral  classification,  color  index,  H-D
classification. The H-R Diagram. Steller evolution and the evolutionary track of a star.
5 Lectures



PAPER: 504 (THEORY)                  
ELECTRONICS:                                           

1.   Volt-ampere  relation  of  P-N  junction  diode  (deduction  not  necessary),  Energy  band diagram of P-N diode, photo diode, LED, varactor diode and zener diode. Rectifiers- half wave and full wave with resistive load, efficiency, ripple factor, filters- series inductor, shunt capacitor, L-section and П-section. Voltage regulation and regulated Power Supply. Clipping and clamping circuits.                                                                              
2.   Thevenin, Norton and Millman theorem & maximum power transfer theorem. 
3.   Transistor, different mode of operations and characteristics of transistor, basic transistor amplifier, load line and operating point (Q point) of transistor, Stabilization of Q point, transistor biasing circuits, two port (four terminals) device and z, y and h parameters, h parameter  equivalent  circuit,  analysis  of  transistor  amplifier  (CE)  with  h  parameters, current gain, voltage gain and power gain, input and output impedance, Classification of amplifiers, Class A, Class B and Class C amplifiers, cascade amplifiers, small signal RC coupled amplifier (CE) and its voltage and current gain in low, mid and high frequency, frequency  response  curve, Phase relation between  input and output, Power amplifiers, power  dissipation,  Harmonic  distortion,  large  signal  Push  Pull  Amplifier  (Class  B).

4.   Concept  of feedback,  different  types of feedback,  advantages  of negative  feedback  in amplifier,  Barkhousen  criterion,  classification  of oscillators,  tuned  collector  oscillator, Phase shift(R-C) and Wein bridge oscillator, Multivibrators.                              
5.   Direct    Coupled    Amplifier,    differential    amplifier,    introduction    to   IC,    OPAM,
characteristics  of an ideal   OPAM, common and differential  mode, CMMR, inverting, non-inverting mode of OPAM, OPAM as  scale changer, adder, subtractor, differentiator 
and integrator.                                                                                                        
6.   Modulation, need of modulation, Theories of AM and FM, side-bands, power content in different parts of the modulated wave, band-width of AM and FM, modulators, amplitude
modulation  circuits, circuit of square law modulation  and detection, SSB transmission,
AM   Transmitter   (block   diagrams),   super   heterodyne   receiver   (block   diagram). Introduction to radio wave propagation, ground or surface wave, space or tropospheric wave and sky wave. Working  and uses of CRO, Introductory  idea of microprocessor.

7.   Binary Number  System,  Decimal  to binary conversion,  Binary to decimal  conversion, Binary addition and subtraction. OR, AND, NOT, NOR and NAND Logic gates using P-
N junction  diode and transistors,  Boolean  Algebra,  De Morgan's  Theorem,  Sequential circuits, Latch, RS, JK, MSJK, D and T flip flops. Introduction to binary transmission
ASK, FSK and PSK.                                                                                              


No comments:

Powered by Blogger.