Header Ads

Breaking News
recent

Gauhati University Question Papers for Physics 6th Semester

Gauhati University Question Papers for Physics 6th Semester

Question Paper from 2010 available    



       More than 50 question papers every semester

Please check your syllabus before downloading the question paper.

If syllabus does not match then don't download the question paper.

Year
Paper 101
 Paper 102
Download
2010
Download
Download
Download
2011
Download
Download
Download
2012
2013
2014
2015
2016
Download
2017
Download
Download
Download



























This is the downloading page for Physics 6th semester but if 

you want to explore the world of Physics than go to the main 

page for Physics  major. Find the all the help form the world of 

education so please comment. 



Link is below down here



Main page- link


More than 50 question papers every semester


Syllabus down here


SIXTH SEMESTER

PAPER 601 (THEORY)             
NUCLEAR PHYSICS:               
1.   Nuclear forces and Stability of Nuclei: Concept of packing fraction and binding energy, binding   energy   curve   and   its   significance.   Nucleon-nucleon   forces   –   qualitative
discussions on nuclear force. Brief outline of Yukawas meson theory, Nuclear stability, neutron proton ratio in stable nuclei, stability curve, odd-even rules of nuclear stability.

2.   Alpha decay: Cause of alpha decay, basic α-decay process, range and energy of α-decay,
α-decay systematics, Geiger Nuttle rules, Qualitative discussion on the theory of α-decay.

3.   Beta-decay:  Types  of  β-decays,  conditions  of  β+   &  β-   decay  and  K  capture,  β-ray 
spectrum, Pauli’s neutrino hypothesis.                              

4.   Gamma-rays: γ-rays and their origin.  Interaction of γ-particle with matter.                 

5.   Nuclear models: Evidence in favour of liquid properties of nuclei, Liquid drop model, Bethe-Weisackar’s  mass formula. Applications of mass formula – estimation of fission
energy,  prediction  of  most  stable  member  of  an  isobaric  family.  Shell  model  (Basic
concepts only).            
                                                                                            
6.   Nuclear Reactions: Types of nuclear reactions, conserved quantities of nuclear reaction, energies  of nuclear  reaction  – Q-value  & its experimental  determination.  Exoergic  & endoergic reactions. Cross-section  of nuclear reaction and its unit. Nuclear fission and
chain  reaction,  critical  size,  controlled  chain  reaction  and  basic  principle  of  nuclear reactor. Nuclear fusion reaction – basic concepts of fusion reactions, fusion barrier, fusion
and thermonuclear reactions (PP chains only).                                                   

7.   Accelerators:  Necessity  of  charge  particle  acceleration  –  construction  and  working principle of linear accelerator. Construction and working principle of a cyclotron.

8.   Detectors: Principles of detection of charge particles. Construction and working principle of gas filled detectors. Ionization chamber – its construction & working principle.

9.   Cosmic  rays:  Origin  of  cosmic  rays,  primary  &  secondary  cosmic  rays  and  their composition. The East West effect. Latitude, longitude & altitude effect, Extensive Air
Shower (EAS).                                                                                                        


PAPER: 602 (THEORY)            
(a) MATHEMATICAL METHODS:       


Introduction  to  tensor,  transformation  of  coordinates,  contravariant  and  covariant tensor,  tensorial  character  of  physical  quantities,  symmetric  and  antisymmetric tensors, kronecker delta. Rules for combination of tensors- addition, subtraction, outer multiplication, contractions and inner multiplications.    
                             
(b) SOLID STATE PHYSICS:                                    
1. The  idea  of  amorphous  and  crystalline  solids,  The  crystal  lattice  and  translation vectors, unit cell, types of crystal lattice, Miller indices, diffraction of X-rays, use of
Bragg’s law to the determination of lattice constants.         
                     
2. The different types of crystal bonding: ionic, covalent, metallic, Van der Waal and hydrogen  bondings,  cohesive  energy  of  ionic  crystal,  Madelung  constant.       

3. Free electron theory of metals, Boltzmann’s equation of state, electronic specific heat, electrical  and  thermal  conductivity  of  metals,  Wiedemann-Franz   law.(Quantum
Mecanical  treatment  to be used).Bloch  theorem  in one  dimension,  Kronig-Penny 
model   of   energy   bands   of   solids,   distinction   among   metal,   insulator   and semiconductor, intrinsic and extrinsic semiconductors  (qualitative discussion only).

4. Introductory  concept  of  superconductivity,  Meissner  effect,  types  I  and  type  II
superconductors.                                                                                                         
5. Magnetic    properties    of   solids:   Magnetization,    magnetic   intensity,    magnetic susceptibility, permeability, hysteresis, B-H curve and energy loss in hysteresis, different classes of magnetic material, magnetic moment, Bohr magneton, Larmor precession,  Classical  theory  of paramagnetism(Langevin’s  theory  and Curie law),

Weiss theory(Quantum Mecanical treatment to be used), relation between para and ferromagnetism, Ferromagnetic domain.                                                     



PAPER: 603 (THEORY)                      
(a) MODERN OPTICS:                                          
1. Optics of crystals: Wollaston prism, Rochon prism, Jones calculus, Interference  of polarized  light:  interference  due to crystal  plates  in plane polarised  light,  Babinet
compensator. Principle of liquid crystal display.                                            
2. Lasers: Characteristics  of laser light, absorption  Spontaneous  emission, Stimulated emission, Einstein coefficients, Population inversion and light amplification, Essential components  of the laser, Ruby and He-Ne laser (principles  only). Elementary  idea about non-linear optics: Second Harmonic Generation.                             

3. Holography:    Formation of    a hologram, Reconstruction of    the    hologram
(mathematical aspect).

4. Optical  Fibers:  Types  of  fibers;  propagation  of  a  ray  through  step  index  fiber: numerical  aperture,  multipath  dispersion;  propagation  through  graded  index  fiber. Basic idea about communication through an optical fiber cable (Block diagram).

5. Optical  components   &  Spectrographs:   Ramsden   and  Huygen’s   eyepieces,   oil immersion objective, Prism spectrograph (Glass and quartz), Grating spectrograph.

(b) ELECTROMAGNETIC THEORY:                    

1. Electromagnetic field equation in integral and differential form, displacement current, Maxwell's     equations,     Energy     Conservation     Law-Poynting     theorem     and
Poyntingvector.                       

2. Electromagnetic  wave equation,  velocity  of electromagnetic  wave,  Monochromatic plane  wave  equation  in  free  space  and  conducting  medium.     Reflection  and Refraction of plane electromagnetic wave for normal and oblique incidence, Snell's
law,  reflection  and  transmission  co-efficient,  Fresnel's  equations,  Polarisation  of 
electromagnetic  wave,  linear,  circular  and  elliptical  polarization,  Brewster's  law


PAPER: 604 (THEORY)          
(a)  STATISTICAL MECHANICS:      

1. Statistical system, and its coordinates, specification of a state in statistical mechanics, Macrostate  and  microstate,  phase  space,  ensemble,  Boltzmann  entropy  relation, ergodic hypothesis, postulate of equal a priori probability, density of phase points in phase space, Liouville’ theorem.                                                                   
2. Symmetry  of wavefunction,  restriction  regarding  the number  of particles  in given state, different types of statistics-  Maxwell-Boltzmann(MB),  Bose-Einstein(BE) and
Fermi-Dirac(FD)  Statistics, Most probable distribution relation in MB, BE and FD
statistics and their comparison. Degeneracy Factor, Density of state.        
3. Application  of MB statistics  to derive Maxwell  distribution  law (velocity,  energy, momentum and frequency).                                                                           
4. Fermi energy and Fermi temperature, Fermi distribution function, Application of FD
statistics to discuss electronic specific heat.                                                 
5. Application  of BE statistics to explain BE condensation  and to derive Black body radiation formula.                                                                                          
(b)  COMPUTER APPLICATIONS:   
++
1.   Programming  exercise  (either  FORTRAN-95  or C or C

): simple  mathematical 
series generation and summation, sorting of numbers largest of n numbers, sorting a list   ascending/descending    order,   solution   of   quadratic   equation,   solution   of simultaneous  linear equation,  least square graph fitting (straight line and quadratic curve)  of given data,   iterative  methods,  implementation  of Runge-Kutta  4th  order
method   of   solving   differential   equation   and   Simpson's   rule   for   integration.
30 Lectures


No comments:

Powered by Blogger.